4.8 Article

Handwritten Chinese Text Recognition by Integrating Multiple Contexts

Journal

Publisher

IEEE COMPUTER SOC
DOI: 10.1109/TPAMI.2011.264

Keywords

Handwritten Chinese text recognition; confidence transformation; geometric models; language models; refined beam search; candidate character augmentation; maximum character accuracy training

Funding

  1. National Natural Science Foundation of China (NSFC) [60825301, 60933010]

Ask authors/readers for more resources

This paper presents an effective approach for the offline recognition of unconstrained handwritten Chinese texts. Under the general integrated segmentation-and-recognition framework with character oversegmentation, we investigate three important issues: candidate path evaluation, path search, and parameter estimation. For path evaluation, we combine multiple contexts (character recognition scores, geometric and linguistic contexts) from the Bayesian decision view, and convert the classifier outputs to posterior probabilities via confidence transformation. In path search, we use a refined beam search algorithm to improve the search efficiency and, meanwhile, use a candidate character augmentation strategy to improve the recognition accuracy. The combining weights of the path evaluation function are optimized by supervised learning using a Maximum Character Accuracy criterion. We evaluated the recognition performance on a Chinese handwriting database CASIA-HWDB, which contains nearly four million character samples of 7,356 classes and 5,091 pages of unconstrained handwritten texts. The experimental results show that confidence transformation and combining multiple contexts improve the text line recognition performance significantly. On a test set of 1,015 handwritten pages, the proposed approach achieved character-level accurate rate of 90.75 percent and correct rate of 91.39 percent, which are superior by far to the best results reported in the literature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available