4.8 Article

An Efficient Hidden Variable Approach to Minimal-Case Camera Motion Estimation

Journal

Publisher

IEEE COMPUTER SOC
DOI: 10.1109/TPAMI.2012.43

Keywords

Camera calibration; camera motion estimation; epipolar geometry; minimal solver; polynomial root finding

Funding

  1. Australian Research Council-ARC
  2. Australian Government
  3. Australian Research Council through the ICT Centre of Excellence Program

Ask authors/readers for more resources

In this paper, we present an efficient new approach for solving two-view minimal-case problems in camera motion estimation, most notably the so-called five-point relative orientation problem and the six-point focal-length problem. Our approach is based on the hidden variable technique used in solving multivariate polynomial systems. The resulting algorithm is conceptually simple, which involves a relaxation which replaces monomials in all but one of the variables to reduce the problem to the solution of sets of linear equations, as well as solving a polynomial eigenvalue problem (polyeig). To efficiently find the polynomial eigenvalues, we make novel use of several numeric techniques, which include quotient-free Gaussian elimination, Levinson-Durbin iteration, and also a dedicated root-polishing procedure. We have tested the approach on different minimal cases and extensions, with satisfactory results obtained. Both the executables and source codes of the proposed algorithms are made freely downloadable.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available