4.5 Article Proceedings Paper

Radiation Effects in MOS Oxides

Journal

IEEE TRANSACTIONS ON NUCLEAR SCIENCE
Volume 55, Issue 4, Pages 1833-1853

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNS.2008.2001040

Keywords

Aging; MOS devices; oxide breakdown; power MOSFETs; radiation effects; silicon-on-insulator; total dose effects

Ask authors/readers for more resources

Electronic devices in space environments can contain numerous types of oxides and insulators. Ionizing radiation can induce significant charge buildup in these oxides and insulators leading to device degradation and failure. Electrons and protons in space can lead to radiation-induced total-dose effects. The two primary types of radiation-induced charge are oxide-trapped charge and interface-trap charge. These charges can cause large radiation-induced threshold voltage shifts and increases in leakage currents. Two alternate dielectrics that have been investigated for replacing silicon dioxide are hafnium oxides and reoxidized nitrided oxides (RNO). For advanced technologies, which may employ alternate dielectrics, radiation-induced voltage shifts in these insulators may be negligible. Radiation-induced charge buildup in parasitic field oxides and in SOI buried oxides can also lead to device degradation and failure. Indeed, for advanced commercial technologies, the total-dose hardness of ICs is normally dominated by radiation-induced charge buildup in either parasitic field oxides and/or SOI buried oxides. Heavy ions in space can also degrade the oxides in electronic devices through several different mechanisms including single-event gate rupture, reduction in device lifetime, and large voltage shifts in power MOSFETs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available