4.6 Article

First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials

Journal

MATERIALS LETTERS
Volume 159, Issue -, Pages 12-15

Publisher

ELSEVIER
DOI: 10.1016/j.matlet.2015.06.046

Keywords

High-entropy alloy; Selective electron beam melting (SEBM); Mechanical properties

Ask authors/readers for more resources

High-entropy alloys (HEAs) are equiatomic, multi-element systems that contain five or more principal elements and have unique and excellent properties. However, it is difficult to overcome the inherent complexity and high levels of control required to produce homogeneous alloys industrially using a conventional casting method. We applied an additive manufacturing technique involving the use of selective electron beam melting (SEBM), which can facilitate a high level of local process control and generate rapid solidification cooling rates. The mechanical properties of the equiatomic AlCoCrFeNi HEA molds produced by SEBM were far superior to those of the corresponding castings. The ductility in particular was remarkably improved. The fracture strength was above 1400 MPa, which was more than six times higher than that of SUS304, a conventional engineering material. We succeeded in demonstrating for the first time that SEBM is a promising manufacturing process for utilizing HEAs as engineering materials. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available