4.7 Article

Experimental Analysis of Accuracy in the Identification of Motor Unit Spike Trains From High-Density Surface EMG

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNSRE.2010.2041593

Keywords

Biomedical signal analysis; high-density surface electromyography (EMG); intramuscular EMG; motor unit; signal resolution

Funding

  1. European Community [239216]
  2. European Project TREMOR [224051]

Ask authors/readers for more resources

The aim of this study was to compare the decomposition results obtained from high-density surface electromyography (EMG) and concurrently recorded intramuscular EMG. Surface EMG signals were recorded with electrode grids from the tibialis anterior, biceps brachii, and abductor digiti minimi muscles of twelve healthy men during isometric contractions ranging between 5% and 20% of the maximal force. Bipolar intramuscular EMG signals were recorded with pairs of wire electrodes. Surface and intramuscular EMG were independently decomposed into motor unit spike trains. When averaged over all the contractions of the same contraction force, the percentage of discharge times of motor units identified by both decompositions varied in the ranges 84%-87% (tibialis anterior), 84%-86% (biceps brachii), and 87%-92% (abductor digiti minimi) across the force levels analyzed. This index of agreement between the two decompositions was linearly correlated with a self-consistency measure of motor unit discharge pattern that was based on coefficient of variation for the interspike interval (R(2) = 0.68 for tibialis anterior, R(2) = 0.56 for biceps brachii, and R(2) = 0.38 for abductor digiti minimi). These results constitute an important contribution to the validation of the noninvasive approach for the investigation of motor unit behavior in isometric low-force tasks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available