4.1 Article

Decentralized Dynamic Surface Control of Large-Scale Interconnected Systems in Strict-Feedback Form Using Neural Networks with Asymptotic Stabilization

Journal

IEEE TRANSACTIONS ON NEURAL NETWORKS
Volume 22, Issue 11, Pages 1709-1722

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNN.2011.2140381

Keywords

Decentralized control; dynamic surface control; neural networks; nonlinear adaptive control

Funding

  1. National Science Foundation [ECCS 0624644]

Ask authors/readers for more resources

A novel neural network (NN)-based nonlinear decentralized adaptive controller is proposed for a class of large-scale, uncertain, interconnected nonlinear systems in strict-feedback form by using the dynamic surface control (DSC) principle, thus, the explosion of complexity problem which is observed in the conventional backstepping approach is relaxed in both state and output feedback control designs. The matching condition is not assumed when considering the interconnection terms. Then, NNs are utilized to approximate the uncertainties in both subsystem and interconnected terms. By using novel NN weight update laws with quadratic error terms as well as proposed control inputs, it is demonstrated using Lyapunov stability that the system states errors converge to zero asymptotically with both state and output feedback controllers, even in the presence of NN approximation errors in contrast with the uniform ultimate boundedness result, which is common in the literature with NN-based DSC and backstepping schemes. Simulation results show the effectiveness of the approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available