4.1 Article

An Extension of the Standard Mixture Model for Image Segmentation

Journal

IEEE TRANSACTIONS ON NEURAL NETWORKS
Volume 21, Issue 8, Pages 1326-1338

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNN.2010.2054109

Keywords

Gradient method; image segmentation; spatial constraints; standard Gaussian mixture model

Funding

  1. Canada Research Chair
  2. NSERC
  3. AUTO21 NCE

Ask authors/readers for more resources

Standard Gaussian mixture modeling (GMM) is a well-known method for image segmentation. However, the pixels themselves are considered independent of each other, making the segmentation result sensitive to noise. To reduce the sensitivity of the segmented result with respect to noise, Markov random field (MRF) models provide a powerful way to account for spatial dependences between image pixels. However, their main drawback is that they are computationally expensive to implement, and require large numbers of parameters. Based on these considerations, we propose an extension of the standard GMM for image segmentation, which utilizes a novel approach to incorporate the spatial relationships between neighboring pixels into the standard GMM. The proposed model is easy to implement and compared with MRF models, requires lesser number of parameters. We also propose a new method to estimate the model parameters in order to minimize the higher bound on the data negative log-likelihood, based on the gradient method. Experimental results obtained on noisy synthetic and real world grayscale images demonstrate the robustness, accuracy and effectiveness of the proposed model in image segmentation, as compared to other methods based on standard GMM and MRF models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available