4.1 Article

Scalable Large-Margin Mahalanobis Distance Metric Learning

Journal

IEEE TRANSACTIONS ON NEURAL NETWORKS
Volume 21, Issue 9, Pages 1524-1530

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNN.2010.2052630

Keywords

Distance metric learning; large-margin nearest neighbor; Mahalanobis distance; semidefinite optimization

Funding

  1. Australian Government

Ask authors/readers for more resources

For many machine learning algorithms such as k-nearest neighbor (k-NN) classifiers and k-means clustering, often their success heavily depends on the metric used to calculate distances between different data points. An effective solution for defining such a metric is to learn it from a set of labeled training samples. In this work, we propose a fast and scalable algorithm to learn a Mahalanobis distance metric. The Mahalanobis metric can be viewed as the Euclidean distance metric on the input data that have been linearly transformed. By employing the principle of margin maximization to achieve better generalization performances, this algorithm formulates the metric learning as a convex optimization problem and a positive semidefinite (p.s.d.) matrix is the unknown variable. Based on an important theorem that a p.s.d. trace-one matrix can always be represented as a convex combination of multiple rank-one matrices, our algorithm accommodates any differentiable loss function and solves the resulting optimization problem using a specialized gradient descent procedure. During the course of optimization, the proposed algorithm maintains the positive semidefiniteness of the matrix variable that is essential for a Mahalanobis metric. Compared with conventional methods like standard interior-point algorithms [2] or the special solver used in large margin nearest neighbor [24], our algorithm is much more efficient and has a better performance in scalability. Experiments on benchmark data sets suggest that, compared with state-of-the-art metric learning algorithms, our algorithm can achieve a comparable classification accuracy with reduced computational complexity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available