4.6 Article

Compact Microstrip Dual-/Tri-/Quad-Band Bandpass Filter Using Open Stubs Loaded Shorted Stepped-Impedance Resonator

Journal

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES
Volume 61, Issue 9, Pages 3187-3199

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMTT.2013.2273759

Keywords

Bandpass filter (BPF); dual-band; multiple-mode resonator (MMR); quad-band; tri-band; wideband

Ask authors/readers for more resources

This paper presents a new class of dual-, tri- and quad-band BPF by using proposed open stub-loaded shorted stepped-impedance resonator (OSLSSIR). The OSLSSIR consists of a two-end-shorted three-section stepped-impedance resistor (SIR) with two identical open stubs loaded at its impedance junctions. Two 50-tapped lines are directly connected to two shorted sections of the SIR to serve as I/O ports. As the electrical lengths of two identical open stubs increase, many more transmission poles (TPs) and transmission zeros (TZs) can be shifted or excited within the interested frequency range. The TZs introduced by open stubs divide the TPs into multiple groups, which can be applied to design a multiple-band bandpass filter (BPF). In order to increase many more design freedoms for tuning filter performance, a high-impedance open stub and the narrow/broad side coupling are introduced as perturbations in all filters design, which can tune the even-and odd-mode TPs separately. In addition, two branches of I/O coupling and open stub-loaded shorted microstrip line are employed in tri- and quad-band BPF design. As examples, two dual-wideband BPFs, one tri-band BPF, and one quad-band BPF have been successfully developed. The fabricated four BPFs have merits of compact sizes, low insertion losses, and high band-to-band isolations. The measured results are in good agreement with the full-wave simulated results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available