4.6 Article

Neural network inverse modeling and applications to microwave filter design

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMTT.2008.919078

Keywords

computer-aided design; inverse modeling; microwave filter modeling; neural networks

Ask authors/readers for more resources

In this paper, systematic neural network modeling techniques are presented for microwave modeling and design using the concept of inverse modeling where the inputs to the inverse model are electrical parameters and outputs are geometrical parameters. Training the neural network inverse model directly may become difficult due to the nonuniqueness of the input-output relationship in the inverse model. We propose a new method to solve such a problem by detecting multivalued solutions in training data. The data containing multivalued solutions are divided into groups according to derivative information using a neural network forward model such that individual groups do not have the problem of multivalued solutions. Multiple inverse models are built based on divided data groups, and are then combined to form a complete model. A comprehensive modeling methodology is proposed, which includes direct inverse modeling, segmentation, derivative division, and model combining techniques. The methodology is applied to waveguide filter modeling and more accurate results are achieved compared to the direct neural network inverse modeling method. Full electromagnetic simulation and measurement results of Ku-band circular waveguide dual-mode pseudoelliptic bandpass filters are presented to demonstrate the efficiency of the proposed neural network inverse modeling methodology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available