4.7 Article

Personalized X-Ray 3-D Reconstruction of the Scoliotic Spine From Hybrid Statistical and Image-Based Models

Journal

IEEE TRANSACTIONS ON MEDICAL IMAGING
Volume 28, Issue 9, Pages 1422-1435

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMI.2009.2016756

Keywords

Atlas-based deformable templates; biplanar X-ray images; scoliotic vertebra segmentation; statistical model; three-dimensional (3-D) spine reconstruction

Funding

  1. Fonds Quebecois de la Recherche sur la Nature et les Technologies
  2. Canadian Institutes of Health Research

Ask authors/readers for more resources

This paper presents a novel 3-D reconstruction method of the scoliotic spine using prior vertebra models with image-based information taken from biplanar X-ray images. We first propose a global modeling approach by exploiting the 3-D scoliotic curve reconstructed from a coronal and sagittal X-ray image in order to generate an approximate statistical model from a 3-D database of scoliotic patients based on a transformation algorithm which incorporates intuitive geometrical properties. The personalized 3-D reconstruction of the spine is then achieved with a novel segmentation method which takes into account the variable appearance of scoliotic vertebrae (rotation, wedging) from standard quality images in order to segment and isolate individual vertebrae on the radiographic planes. More specifically, it uses prior 3-D models regulated from 2-D image level set functionals to identify and match corresponding bone structures on the biplanar X-rays. An iterative optimization procedure integrating similarity measures such as deformable vertebral contours regulated from high-level anatomical primitives, morphological knowledge and epipolar constraints is then applied to globally refine the 3-D anatomical landmarks on each vertebra level of the spine. This method was validated on twenty scoliotic patients by comparing results to a standard manual approach. The qualitative evaluation of the retro-projection of the vertebral contours confirms that the proposed method can achieve better consistency to the X-ray image's natural content. A comparison to synthetic models and real patient data also yields good accuracy on the localization of low-level primitives such as anatomical landmarks identified by an expert on each vertebra. The experiments reported in this paper demonstrate that the proposed method offers a better matching accuracy on a set of landmarks from biplanar views when compared to a manual technique for each evaluated cases, and its precision is comparable to 3-D models generated from magnetic resonance images, thus suitable for routine 3-D clinical assessment of spinal deformities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available