4.7 Article

An Adaptive Mean-Shift Framework for MRI Brain Segmentation

Journal

IEEE TRANSACTIONS ON MEDICAL IMAGING
Volume 28, Issue 8, Pages 1238-1250

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMI.2009.2013850

Keywords

Adaptive mean-shift; brain magnetic resonance imaging (MRI); segmentation

Funding

  1. Israeli Ministry of Science

Ask authors/readers for more resources

An automated scheme for magnetic resonance imaging (MRI) brain segmentation is proposed. An adaptive mean-shift methodology is utilized in order to classify brain voxels into one of three main tissue types: gray matter, white matter, and Cerebro-spinal fluid. The MRI image space is represented by a high-dimensional feature space that includes multimodal intensity features as well as spatial features. An adaptive mean-shift algorithm clusters the joint spatial-intensity feature space, thus extracting a representative set of high-density points within the feature space, otherwise known as modes. Tissue segmentation is obtained by a follow-up phase of intensity-based mode clustering into the three tissue categories. By its nonparametric nature, adaptive mean-shift can deal successfully with nonconvex clusters and produce convergence modes that are better candidates for intensity based classification than the initial voxels. The proposed method is validated on 3-D single and multimodal datasets, for both simulated and real MRI data. It is shown to perform well in comparison to other state-of-the-art methods without the use of a preregistered statistical brain atlas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available