4.6 Article

Improved electrical conductance through self-assembly of bioinspired peptides into nanoscale fibers

Journal

MATERIALS CHEMISTRY AND PHYSICS
Volume 158, Issue -, Pages 52-59

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.matchemphys.2015.03.034

Keywords

Biomaterials; Atomic force microscopy (AFM); Electrical conductivity; Nanostructures

Ask authors/readers for more resources

We investigated the electrical conductance of films consisting of bio-inspired peptide molecules and of their extended form, self-assembled nanoscale fibers. Here, the entirely natural and novel peptide sequence, GFPRFAGFP, was designed based on naturally occurring fibrous proteins. To attain electrical conductance, we implemented phenylalanine residues in the sequence such that the aromatic rings are present along face of the molecule. We confirmed self-assembly of nanoscale fibers in pure water after incubating the peptides at 37 degrees C by AFM. The morphology and conformation of the incubated peptide fibers were studied using AFM, fluorescence spectroscopy and circular dichroism spectroscopy. It was shown that very thin fibers with a single-molecule-level diameter form. The helical feature of the peptide backbone and enhanced stacking of aromatic residues were also investigated. This aromatic stacking is important to our electrical measurements as, even in vacuum environment, films of non-incubated GFPRFAGFP sometimes show apparent conductance while those containing self-assembled nanoscale fibers show stable and improved conductance. We propose that this effect may be due to extended stacking of aromatic residues providing pi - pi conjugation along the fiber. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available