4.6 Article

Removal of thorium from water using modified magnetite nanoparticles capped with rosin amidoxime

Journal

MATERIALS CHEMISTRY AND PHYSICS
Volume 163, Issue -, Pages 253-261

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.matchemphys.2015.07.038

Keywords

Nanoparticle; Magnetic; Characterization; Core shell; Morphology

Funding

  1. King Saud University, Deanship of Scientific Research, Deputy Research Chair

Ask authors/readers for more resources

The present study describes synthesis and characterization of diacrylamidoxime triaethylenetetralevopimaramide (DPAO) and its use in surface modification of Fe3O4 magnetic nanoparticles to obtain DPAO-based magnetic nanopartides (DPAO-MNPs). The prepared composite was characterized by FTIR, (HNMR)-H-1, XRD, DLS, TEM, SEM and EDX. Vibrating sample magnetometer is used to determine the magnetic properties of DPAO-MNPs. Results of analyses indicate that the surface of Fe3O4 was successfully capped with DPAO. The adsorption features of the prepared composite towards thorium ions were investigated in a batch system. Kinetic study of Th(IV) adsorption on DPAO-MNPs indicate the adsorption equilibrium achieved within 150 min and is pH dependent. The adsorption results were described mathematically using Langmuir and Freundlich sorption models. The composite showed a maximum Th(IV) loading capacity of 666 mg/g at 25 degrees C and pH 4. The thermodynamic results indicated that the adsorption process was thermodynamically favorable, spontaneous and endothermic nature. The obtained results suggest that DPAO-MNPs composite may be considered as a potential fast, effective and simple adsorbent for sorption thorium(IV) from water. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available