4.7 Article

Decision Trees for Uncertain Data

Journal

Publisher

IEEE COMPUTER SOC
DOI: 10.1109/TKDE.2009.175

Keywords

Uncertain data; decision tree; classification; data mining

Funding

  1. Hong Kong Research Grants Council [HKU 7134/06E]

Ask authors/readers for more resources

Traditional decision tree classifiers work with data whose values are known and precise. We extend such classifiers to handle data with uncertain information. Value uncertainty arises in many applications during the data collection process. Example sources of uncertainty include measurement/quantization errors, data staleness, and multiple repeated measurements. With uncertainty, the value of a data item is often represented not by one single value, but by multiple values forming a probability distribution. Rather than abstracting uncertain data by statistical derivatives (such as mean and median), we discover that the accuracy of a decision tree classifier can be much improved if the complete information of a data item (taking into account the probability density function (pdf)) is utilized. We extend classical decision tree building algorithms to handle data tuples with uncertain values. Extensive experiments have been conducted which show that the resulting classifiers are more accurate than those using value averages. Since processing pdfs is computationally more costly than processing single values (e.g., averages), decision tree construction on uncertain data is more CPU demanding than that for certain data. To tackle this problem, we propose a series of pruning techniques that can greatly improve construction efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available