4.7 Article

Autonomous Visual Navigation and Laser-Based Moving Obstacle Avoidance

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TITS.2014.2308977

Keywords

Collision avoidance; visual navigation; visual servoing

Ask authors/readers for more resources

Moving obstacle avoidance is a fundamental requirement for any robot operating in real environments, where pedestrians, bicycles, and cars are present. In this paper, we propose and validate a framework for avoiding moving obstacles during visual navigation with a wheeled mobile robot. Visual navigation consists of following a path, represented as an ordered set of key images, which have been acquired by an on-board camera in a teaching phase. While following such a path, our robot is able to avoid static and moving obstacles, which were not present during teaching, and which are sensed by an on-board lidar. The proposed approach takes explicitly into account obstacle velocities, estimated using an appropriate Kalman-based observer. The velocities are then used to predict the obstacle positions within a tentacle-based approach. Finally, our approach is validated in a series of real outdoor experiments, showing that when the obstacle velocities are considered, the robot behavior is safer, smoother, and faster than when it is not.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available