4.7 Article

Multiparametric Evaluation of the Acoustic Behavior of Halloysite Nanotubes for Medical Echographic Image Enhancement

Journal

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT
Volume 63, Issue 6, Pages 1423-1430

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIM.2013.2287797

Keywords

Cell therapy; drug delivery; echographic imaging; halloysite nanotubes (HNTs); safety; targeting; tissue typing; ultrasound (US) contrast agents

Funding

  1. Italian Ministry of Instruction and Research [602/Ric/2005]
  2. FESR P.O. Apulia Region [3Q5AX31]
  3. Progetto Bandiera NANOMAX ENCODER
  4. [DM18604]

Ask authors/readers for more resources

Halloysite nanotubes (HNTs) are nanomaterials composed of double layered aluminosilicate minerals characterized by a wide range of medical applications. Nonetheless, systematic investigations of their imaging potential are still poorly documented. This paper shows a parametric assessment of the effectiveness of HNTs as scatterers for safe ultrasound (US)-based molecular imaging. Quantitative evaluation of average signal enhancement produced by HNTs with varying set up configuration was performed. The influence of different levels of power (20%, 50%, and 80%) of the signal emitted by clinical equipment was determined, to assess the efficacy of different HNT concentrations (1.5, 3, and 5 mg/mL) at conventional ultrasonic frequencies (5.7-7 MHz), even in case of specific limitation regarding US mechanical interaction with target tissues. Different samples of HNT containing agarose gel were imaged through a commercially available echographic system and acquired data were processed through a dedicated prototypal platform to extract the average ultrasonic signal amplitude. The rate of signal enhancement achieved by different concentration values was quantified and the contribution of frequency increment was separately evaluated. Despite influencing the level of mechanical excitation on HNTs and tissues, our results demonstrated how increasing the power of the emitted signal negatively affected the measured backscatter. Conversely, noticeable improvements in signal backscatter could be achieved incrementing HNT concentration and the echographic frequency employed; specifically the signal enhancement over the used concentration range could be improved by averagely 20%, corresponding to 4.86 +/- 0.80 (a.u.), when employing the higher value of echographic frequency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available