4.5 Article

Saddle Point in the Minimax Converse for Channel Coding

Journal

IEEE TRANSACTIONS ON INFORMATION THEORY
Volume 59, Issue 5, Pages 2576-2595

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIT.2012.2236382

Keywords

Binary hypothesis testing; channel coding; channel symmetries; converse theorem; error exponents; minimax; Shannon theory

Funding

  1. Center for Science of Information, a National Science Foundation Science and Technology Center [CCF-0939370]

Ask authors/readers for more resources

A minimax metaconverse has recently been proposed as a simultaneous generalization of a number of classical results and a tool for the nonasymptotic analysis. In this paper, it is shown that the order of optimizing the input and output distributions can be interchanged without affecting the bound. In the course of the proof, a number of auxiliary results of separate interest are obtained. In particular, it is shown that the optimization problem is convex and can be solved in many cases by the symmetry considerations. As a consequence, it is demonstrated that in the latter cases, the (multiletter) input distribution in information-spectrum (Verdu-Han) converse bound can be taken to be a (memoryless) product of single-letter ones. A tight converse for the binary erasure channel is rederived by computing the optimal (nonproduct) output distribution. For discrete memoryless channels, a conjecture of Poor and Verdu regarding the tightness of the information spectrum bound on the error exponents is resolved in the negative. Concept of the channel symmetry group is established and relations with the definitions of symmetry by Gallager and Dobrushin are investigated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available