4.5 Article Proceedings Paper

Tight Bounds on Computing Error-Correcting Codes by Bounded-Depth Circuits With Arbitrary Gates

Journal

IEEE TRANSACTIONS ON INFORMATION THEORY
Volume 59, Issue 10, Pages 6611-6627

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIT.2013.2270275

Keywords

Bounded-depth circuits; error-correcting codes; hashing; lower bounds; superconcentrators

Funding

  1. Division of Computing and Communication Foundations
  2. Direct For Computer & Info Scie & Enginr [1018060] Funding Source: National Science Foundation

Ask authors/readers for more resources

We bound the minimum number of wires needed to compute any (asymptotically good) error-correcting code C : {0, 1}(Omega(n)) -> {0, 1}(n) with minimum distance Omega(n), using unbounded fan-in circuits of depth with arbitrary gates. Our main results are: 1) if d = 2, then w = Theta(n(lg n/lg lg n)(2)); 2) if d = 3, then w = Theta(n lg lg n); 3) if d = 2k or d = 2k + 1 for some integer k >= 2, then w = Theta(n lambda(k)(n)), where lambda(1)(n) = inverted rightlg ninverted left perpendicular lambda(i+1)(n) = lambda(i)*(n), and the * operation gives how many times one has to iterate the function lambda(i) to reach a value at most 1 from the argument; and 4) if d = lg* n, then w = O(n). For depth d = 2, our Omega(n(lg n/lg lg n)(2)) lower bound gives the largest known lower bound for computing any linear map. The upper bounds imply that a (necessarily dense) generator matrix for our code can be written as the product of two sparse matrices. Using known techniques, we also obtain similar (but not tight) bounds for computing pairwise-independent hash functions. Our lower bounds are based on a superconcentrator-like condition that the graphs of circuits computing good codes must satisfy. This condition is provably intermediate between superconcentrators and their weakenings considered before.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available