4.0 Article Proceedings Paper

Tumor Clustering Using Nonnegative Matrix Factorization With Gene Selection

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TITB.2009.2018115

Keywords

Clustering; gene expression data; independent component analysis (ICA); nonnegative matrix factorization (NMF); tumor

Ask authors/readers for more resources

Tumor clustering is becoming a powerful method in cancer class discovery. Nonnegative matrix factorization (NMF) has shown advantages over other conventional clustering techniques. Nonetheless, there is still considerable room for improving the performance of NMF. To this end, in this paper, gene selection and explicitly enforcing sparseness are introduced into the factorization process. Particularly, independent component analysis is employed to select a subset of genes so that the effect of irrelevant or noisy genes can be reduced. The NMF and its extensions, sparse NMF and NMF with sparseness constraint, are then used for tumor clustering on the selected genes. A series of elaborate experiments are performed by varying the number of clusters and the number of selected genes to evaluate the cooperation between different gene selection settings and NMF-based clustering. Finally, the experiments on three representative gene expression datasets demonstrated that the proposed scheme can achieve better clustering results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available