4.7 Article

A comparative study on material selection of microelectromechanical systems electrostatic actuators using Ashby, VIKOR and TOPSIS

Journal

MATERIALS & DESIGN
Volume 65, Issue -, Pages 328-334

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2014.09.004

Keywords

-

Ask authors/readers for more resources

Due to the rapid development of microelectromechanical systems (MEMS) technology and large numbers of candidate materials, material selection for MEMS devices needs systematic approach. In this paper, for different applications of MEMS electrostatic actuators, based on the actuation voltage and force, speed of actuation and electrical resistivity, the most appropriate materials are selected. For this purpose, Ashby approach as Multi Objective Decision Making (MODM) technique, Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and VIse Kriterijumska Optimizacija kompromisno Resenja (VIKOR) methods as Multiple Attribute Decision Making (MADM) technique are used. The results show good agreement between these three different methods for material selection. The analysis suggest that for high actuation force and speed devices, diamond and Silicon Carbide are the best, for large displacement with low actuation voltage actuators, polymers such as Polymethyl methacrylate (PMMA) and Polyvinylidene fluoride (PVDF) are the best options. Also, for low electrical resistivity, high speed with low actuation voltage devices, aluminum is recommended. Finally, based on the results, comparison between Ashby, VIKOR and TOPSIS methods are presented. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available