4.8 Article

Robust Data-Driven Modeling Approach for Real-Time Final Product Quality Prediction in Batch Process Operation

Journal

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
Volume 7, Issue 2, Pages 371-377

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TII.2010.2103401

Keywords

Batch process; inferential model; outliers; partial least squares (PLS); product quality prediction

Ask authors/readers for more resources

Making on-specification products is a primary goal, and also a challenge in chemical batch process operation. Due to the uncertainty of raw materials and instability of operating conditions, it may not produce the desired on-spec final product. It would be helpful if one can predict the product quality during each operation, so that one can make adjustments to process conditions in order to make on-spec product. This paper addresses the issue of real-time prediction of final product quality during a batch operation. First, a data-driven modeling approach is presented. This multimodel approach uses available process information up to the current points to capture their time-varying relationships with the final product quality during the course of operation, so that the prognosis of product quality can be obtained in real-time. Then, due to its data-driven nature, the focus is given on how to make the models robust in order to eliminate the effect of noise, especially, outliers in the data. A model-based outlier detection method is presented. The proposed approach is applied to a generic chemical batch case study, with its prediction performance being evaluated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available