4.8 Article

A Figure-of-Merit for Designing High-Performance Inductive Power Transmission Links

Journal

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
Volume 60, Issue 11, Pages 5292-5305

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIE.2012.2227914

Keywords

Charging electric vehicles; implantable microelectronic devices; inductive; mobile devices; power transfer efficiency (PTE); wireless power transmission

Funding

  1. National Institutes of Health [NIBIB-1R21EB009437-01A1, NINDS-1R01NS062031-01A1]
  2. National Science Foundation [ECCS-824199]
  3. Directorate For Engineering
  4. Div Of Electrical, Commun & Cyber Sys [0824199] Funding Source: National Science Foundation

Ask authors/readers for more resources

Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key inductive link design parameters that relate to the power source and driver specs, power loss, transmission range, robustness against misalignment, variations in loading, and interference with other devices. Designers need to strike a delicate balance between these two because designing the link to achieve high PTE will degrade the PDL and vice versa. We are proposing a new figure-of-merit (FoM), which can help designers to find out whether a two-, three-, or four-coil link is appropriate for their particular application and guide them through an iterative design procedure to reach optimal coil geometries based on how they weigh the PTE versus PDL for that application. Three design examples at three different power levels have been presented based on the proposed FoM for implantable microelectronic devices, handheld mobile devices, and electric vehicles. The new FoM suggests that the two-coil links are suitable when the coils are strongly coupled, and a large PDL is needed. Three-coil links are the best when the coils are loosely coupled, the coupling distance varies considerably, and large PDL is necessary. Finally, four-coil links are optimal when the PTE is paramount, the coils are loosely coupled, and their relative distance and alignment are stable. Measurement results support the accuracy of the theoretical design procedure and conclusions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available