4.8 Article

Investigation of Methods for Data Communication and Power Delivery Through Metals

Journal

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
Volume 58, Issue 10, Pages 4972-4980

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIE.2010.2103535

Keywords

Acoustic signal processing; inductive power transfer (IPT); transducers

Ask authors/readers for more resources

When a sensor is located within a metallic housing, conveying data back to a controller or data logger is not trivial. To maintain structural integrity, or simply for ease of installation, it is often not desirable to break the wall of the vessel, preventing any hard-wired solution. The conducting nature of the structure prevents the effective use of radio communications due to skin effect. Applications involving sealed containers also have a requirement for power delivery, as the periodic changing of batteries is impractical. In this paper, a number of systems are presented for through-metal communications and power delivery. A novel noncontact electromagnetic acoustic transducer communication system is demonstrated, which is capable of data rates in excess of 1 Mb/s. Furthermore, a power transfer efficiency of approximately 4% is shown to be achievable through 20-mm-thick stainless steel using inductive coupling. These novel solutions are critically compared to previous systems based on piezoelectric transducers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available