4.8 Article

Modified pulse-adjustment technique to control dc/dc converters driving variable constant-power loads

Journal

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
Volume 55, Issue 3, Pages 1133-1146

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIE.2007.909757

Keywords

automotive; buck-boost converter; constant-power loads (CPLs); control; electric vehicles; line regulation; modeling and analysis; multiconverter; negative-impedance instability; power converters

Ask authors/readers for more resources

Multiconverter-distributed dc architectures have been utilized for power distribution in many applications such as telecommunication systems, sea and undersea vehicles, an international space station, aircraft, electric vehicles, hybrid-electric vehicles, and fuel-cell vehicles, where reliability is of prime concern. The number of power-electronic converters (ac/dc, dc/dc, dc/ac, and ac/ac) in these multiconverter electrical power systems varies from a few converters in a conventional land vehicle, to tens of converters in an advanced aircraft, and to hundreds of converters in the international space station. In these advanced applications, power-electronic converters might need to have a tight output-voltage regulation. From the output perspective, this property is highly desirable. However, since power-electronic converters are efficient, tight regulation of the output makes the converter appear as a constant-power load (CPL) at its input side. Dynamic behavior of CPLs is equivalent,to negative impedance and, therefore, can result in instability of the interconnected power system. In order to mitigate the instability of the power converters loaded by CPLs, this paper presents the pulse-adjustment digital control technique. It is simple and easy to implement in application-specific integrated circuits, digital-signal processors, or field-programmable gate arrays. Moreover, its dynamic response is fast and robust. Line and load regulations are simply achievable using this technique. Analytical, as well as simulation and experimental results of applying the proposed method to a dc/dc buck-boost converter confirm the validity of the presented technique.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available