4.7 Article

Human Detection by Quadratic Classification on Subspace of Extended Histogram of Gradients

Journal

IEEE TRANSACTIONS ON IMAGE PROCESSING
Volume 23, Issue 1, Pages 287-297

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIP.2013.2264677

Keywords

Histogram of gradients; human detection; HOG; dimension reduction; asymmetric principal component analysis

Ask authors/readers for more resources

This paper proposes a quadratic classification approach on the subspace of Extended Histogram of Gradients (ExHoG) for human detection. By investigating the limitations of Histogram of Gradients (HG) and Histogram of Oriented Gradients (HOG), ExHoG is proposed as a new feature for human detection. ExHoG alleviates the problem of discrimination between a dark object against a bright background and vice versa inherent in HG. It also resolves an issue of HOG whereby gradients of opposite directions in the same cell are mapped into the same histogram bin. We reduce the dimensionality of ExHoG using Asymmetric Principal Component Analysis (APCA) for improved quadratic classification. APCA also addresses the asymmetry issue in training sets of human detection where there are much fewer human samples than non-human samples. Our proposed approach is tested on three established benchmarking data sets - INRIA, Caltech, and Daimler - using a modified Minimum Mahalanobis distance classifier. Results indicate that the proposed approach outperforms current state-of-the-art human detection methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available