4.7 Article

Exploiting Transitivity of Correlation for Fast Template Matching

Journal

IEEE TRANSACTIONS ON IMAGE PROCESSING
Volume 19, Issue 8, Pages 2190-2200

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIP.2010.2046809

Keywords

Auto correlation; correlation coefficient; cross correlation; fast template matching; normalized cross correlation

Ask authors/readers for more resources

Elimination Algorithms are often used in template matching to provide a significant speed-up by skipping portions of the computation while guaranteeing the same best-match location as exhaustive search. In this work, we develop elimination algorithms for correlation-based match measures by exploiting the transitivity of correlation. We show that transitive bounds can result in a high computational speed-up if strong autocorrelation is present in the dataset. Generally strong intrareference local autocorrelation is found in natural images, strong inter-reference autocorrelation is found if objects are to be tracked across consecutive video frames and strong intertemplate autocorrelation is found if consecutive video frames are to be matched with a reference image. For each of these cases, the transitive bounds can be adapted to result in an efficient elimination algorithm. The proposed elimination algorithms are exact, that is, they guarantee to yield the same peak location as exhaustive search over the entire solution space. While the speed-up obtained is data dependent, we show empirical results of up to an order of magnitude faster computation as compared to the currently used efficient algorithms on a variety of datasets.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available