4.7 Article

Multitask Remote Sensing Data Classification

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2012.2200043

Keywords

Cloud screening; covariate shift (CS); data set bias; domain adaptation; image classification; land-mine detection; multitask learning (MTL); support vector machine (SVM); urban monitoring

Funding

  1. Spanish Ministry of Science and Innovation [CSD2008-00010, TEC2009-14504-C02-01, AYA2008-05965-C04-03, CSD2007-00018]
  2. IST Programme of the European Community under the PASCAL2 Network of Excellence [IST-2007-216886]

Ask authors/readers for more resources

Many remote sensing data processing problems are inherently constituted by several tasks that can be solved either individually or jointly. For instance, each image in a multitemporal classification setting could be taken as an individual task. Here, the relation to previous acquisitions should be properly considered because of the nonstationary behavior of temporal, spatial, and angular image features which gives rise to distribution changes. This phenomenon is known as covariate shift. Additionally, when labeled data are scarce or expensive to obtain, the small sample-set problem arises, which makes solving the problems independently in each domain difficult. Multitask learning (MTL) aims at jointly solving a set of prediction problems by sharing information across tasks. This paper introduces MTL in remote sensing data classification. The proposed methods alleviate the data set shift by imposing cross-information in the classifiers through matrix regularization. We consider the support vector machine (SVM) as the core learner and two different regularization schemes: 1) the inclusion of relational operators between tasks and 2) the pairwise Euclidean distance of the predictors in the Hilbert space. These methods rely on simple and intuitive modifications of the kernel used in the standard SVM. Experiments are conducted in three challenging remote sensing problems: cloud screening from multispectral images, land-mine detection using radar data, and multitemporal and multisource image classification. The pairwise method consistently outperforms standard independent and aggregate approaches by about +2% to 4% in all problems at no additional cost. Also, the solutions found give us information about the distribution shift among tasks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available