4.7 Article

A Graph-Based Classification Method for Hyperspectral Images

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2012.2205002

Keywords

Classification; graph cut (GC); hyperspectral; Markov random field (MRF); support vector machine (SVM)

Funding

  1. National Basic Research Program of China [2012CB316304]
  2. Sustainable Urban Metabolism for Europe project [212034]

Ask authors/readers for more resources

The goal of this paper is to apply graph cut (GC) theory to the classification of hyperspectral remote sensing images. The task is formulated as a labeling problem on Markov random field (MRF) constructed on the image grid, and GC algorithm is employed to solve this task. In general, a large number of user interactive strikes are necessary to obtain satisfactory segmentation results. Due to the spatial variability of spectral signatures, however, hyperspectral remote sensing images often contain many tiny regions. Labeling all these tiny regions usually needs expensive human labor. To overcome this difficulty, a pixelwise fuzzy classification based on support vector machine (SVM) is first applied. As a result, only pixels with high probabilities are preserved as labeled ones. This generates a pseudouser strike map. This map is then employed for GC to evaluate the truthful likelihoods of class labels and propagate them to the MRF. To evaluate the robustness of our method, we have tested our method on both large and small training sets. Additionally, comparisons are made between the results of SVM, SVM with stacking neighboring vectors, SVM with morphological preprocessing, extraction and classification of homogeneous objects, and our method. Comparative experimental results demonstrate the validity of our method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available