4.7 Article Proceedings Paper

Comparison of Ocean Surface Winds From ENVISAT ASAR, MetOp ASCAT Scatterometer, Buoy Measurements, and NOGAPS Model

Journal

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
Volume 49, Issue 12, Pages 4743-4750

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2011.2159802

Keywords

Advanced Scatterometer (ASCAT); buoy; ocean surface wind; synthetic aperture radar (SAR)

Ask authors/readers for more resources

In this paper, we perform a comparison of wind speed measurements from the ENVISAT Advanced Synthetic Aperture Radar (ASAR), the MetOp-A Advanced Scatterometer (ASCAT), the U.S. National Data Buoy Center's moored buoys, and the U.S. Navy Operational Global Atmospheric Prediction System (NOGAPS) model. These comparisons were made in near U.S. coast regions over a 17-month period from March 2009 to July 2010. The ASAR wind speed retrieval agreed well with the scatterometer and model estimates, with mean differences ranging from -0.69 to 0.85 m/s and standard deviations between 1.16 and 1.77 m/s, depending upon the ASAR beam mode type. The results indicate that ASAR-derived ocean surface wind speeds are as accurate as the ASCAT and NOGAPS wind products. Comparisons between ASCAT winds and synthetic aperture radar (SAR) winds averaged at different spatial resolutions show very little change. This demonstrates that it is suitable that the scatterometer wind retrieval geophysical model function, i.e., CMOD5, is used for SAR wind retrieval. The impact of C-band VV polarization SAR calibration error on wind retrieval is also discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available