4.7 Article

Retrieval of Leaf Biochemical Parameters Using PROSPECT Inversion: A New Approach for Alleviating Ill-Posed Problems

Journal

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
Volume 49, Issue 7, Pages 2499-2506

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2011.2109390

Keywords

Ill posed; leaf biochemistry; model inversion; PROSPECT; sensitivity analysis (SA)

Funding

  1. Japan Society for the Promotion of Science [18688007]
  2. Chinese Academy of Sciences
  3. Grants-in-Aid for Scientific Research [18688007] Funding Source: KAKEN

Ask authors/readers for more resources

Retrieval of leaf biochemical parameters from reflectance measurements using model inversion generally faces ill-posed problems, which dramatically decreases the estimation accuracy of an inverse model. While the standard approach for model inversion retrieves various parameters simultaneously, usually only based on one merit function, the new approach proposed in this paper assigns a specific merit function for each retrieved parameter. Each merit function is specified in terms of the wavelength domains that the given parameter was found to be specifically sensitive to in an earlier sensitivity analysis. The approach has been validated with both in situ measured data sets and an artificial data set of 10 000 spectra simulated by the PROSPECT model. Results indicate that the new approach greatly improves the performance of inversion models, with root-mean-square error (rmse) values for chlorophyll content (Chl), equivalent water thickness (EWT), and leaf mass per area (LMA), based on the simulated data, of 7.12 mu g/cm(2), 0.0012 g/cm(2), and 0.0019 g/cm(2), respectively, compared with 11.36 mu g/cm(2), 0.0032 g/cm(2), and 0.0040 g/cm(2) when using the standard approach. As for field-measured data sets, the proposed approach also greatly outperformed the standard approach, with respective rmse values of 8.11 mu g/cm(2), 0.0012 g/cm(2), and 0.0008 g/cm(2) for Chl, EWT, and LMA when all data are pooled, compared with 11.84 mu g/cm(2), 0.0020 g/cm(2), and 0.0027 g/cm(2) when using the standard approach. Hence, the proposed approach for model inversion can largely alleviate the ill-posed problem, and it could be widely applied for retrieving leaf biochemical parameters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available