4.7 Article

Simulation of Optical Remote-Sensing Scenes With Application to the EnMAP Hyperspectral Mission

Journal

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
Volume 47, Issue 7, Pages 2340-2351

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2008.2011616

Keywords

Environmental Mapping and Analysis Program (EnMAP); imaging spectroscopy; instrumental noise; nonuniformity; radiative transfer; scene simulation

Funding

  1. German Federal Ministry of Economic Affairs and Technology

Ask authors/readers for more resources

The simulation of remote-sensing images is a useful tool for a variety of tasks, such as the definition of future Earth Observation systems, the optimization of instrument specifications, and the development and validation of data processing algorithms. A scene simulator for optical hyperspectral and multispectral data has been implemented in the frame of the Environmental Mapping and Analysis Program (EnMAP) mission. EnMAP is a German-built hyperspectral space sensor scheduled for launch in 2012. EnMAP will measure in the 420-2450-nm spectral range at a varying spectral sampling of 6.5-10 mn. Images will cover 30 x 30 km areas at an approximate ground sampling distance of 30 in. The EnMAP scene simulator presented in this paper is able to generate realistic EnMAP-like data in an automatic way under a set of user-driven instrumental and scene parameters. Radiance and digital numbers data are generated by five sequential processing modules which are able to produce data over a range of natural environments, acquisition and illumination geometries, cloud covers, and instrument configurations. The latter include the simulation of data nominiformity in the spatial and spectral domains, spatially coherent and noncoherent instrumental noise, and instrument's modulation transfer function. Realistic surface patterns for the simulated data are provided by existing remote-sensing data in different environments, from dry geological sites to green vegetation areas. A flexible radiative transfer simulation scheme enables the generation of different illumination, observation, and atmospheric conditions. The methodology applied to the complete scene simulation and some sample results are presented and analyzed in this paper.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available