4.7 Article

FOSMEX:: Forest soil moisture experiments with microwave radiometry

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2007.914797

Keywords

canopy transmissivity; forest; microwave radiometry; radiative transfer; soil moisture

Ask authors/readers for more resources

The microwave Forest Soil Moisture Experiment (FOSMEX) was performed at a deciduous forest site at the Research Centre Julich (Germany). An L- and an X-band radiometer were mounted 100 m above ground and directed to the canopy. The measurements consist of dual- and single-polarized L- and X-band data and simultaneously recorded ground moisture, temperature, and meteorological data. The canopy L-band transmissivity was estimated from a subset of the FOSMEX data, where the ground was masked with a metalized foil. For the foliage-free canopy, the reflecting foil diminished the L-band brightness by approximate to 24 K, whereas brightness increased by approximate to 14 K when the foil was removed from below the foliated canopy. Depending on the assumption made on the scattering albedo of the canopy, the transmissivities were between 0.2 and 0.51. Furthermore, the contribution of the foliage was quantified. Although, the evaluation revealed the semitransparency of the canopy for L-band frequencies, the brightness sensitivity with respect to ground moisture was substantially reduced for all foliation states. The effect of ground surface moisture was explored in an irrigation experiment. The L-band measurements were only affected for a few hours until the water drained through the litter layer. This emphasizes the significance of the presence of litter for soil moisture retrieval from remotely sensed L-band brightness data. The FOSMEX database serves for further testing and improving radiative transfer models used for interpreting microwave data received from future spaceborne L-band radiometers flying over areas comprising a considerable fraction of deciduous forests.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available