4.7 Article

Supervised classification and estimation of hydrometeors from C-band dual-polarized radars: A Bayesian approach

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2007.906476

Keywords

Bayesian inversion; hydrometeor classification and estimation; polarimetry; radar meteorology; rain clouds

Ask authors/readers for more resources

In this paper, a Bayesian statistical approach for supervised classification and estimation of hydrometeors, using a C-band polarimetric radar, is presented and discussed. The Bayesian Radar Algorithm for Hydrometeor Classification at C-band (BRAHCC) is supervised by a backscattering microphysical model, aimed at representing ten different hydrometeor classes in water, ice, and mixed phase. The expected error budget is evaluated by means of contingency tables on the basis of C-band radar noisy and attenuated synthetic data. Its accuracy is better than that obtained from a previously developed fuzzy logic C-band classification algorithm. As a second step of the overall retrieval algorithm, a multivariate regression is adopted to derive water content statistical estimators, exploiting simulated polarimetric radar data for each hydrometeor class. The BRAHCC methodology is then applied to a convective hail event, observed by two C-band dual-polarized radars in a network configuration. The hydrometeor classification along the line of sight, connecting the two C-band radars, is performed using the BRAHCC applied to path-attenuation-corrected data. Qualitative results are consistent with those derived from the fuzzy logic algorithm. Hydrometeor water content temporal evolution is tracked along the radar line of sight. Hail vertical occurrence is derived and compared with an empirical hail detection index applied along the radar connection line during the whole event.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available