4.7 Article

The Transferability Approach: Crossing the Reality Gap in Evolutionary Robotics

Journal

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
Volume 17, Issue 1, Pages 122-145

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TEVC.2012.2185849

Keywords

Evolutionary robotics; reality gap; transferability approach

Ask authors/readers for more resources

The reality gap, which often makes controllers evolved in simulation inefficient once transferred onto the physical robot, remains a critical issue in evolutionary robotics (ER). We hypothesize that this gap highlights a conflict between the efficiency of the solutions in simulation and their transferability from simulation to reality: the most efficient solutions in simulation often exploit badly modeled phenomena to achieve high fitness values with unrealistic behaviors. This hypothesis leads to the transferability approach, a multiobjective formulation of ER in which two main objectives are optimized via a Pareto-based multiobjective evolutionary algorithm: 1) the fitness; and 2) the transferability, estimated by a simulation-to-reality (STR) disparity measure. To evaluate this second objective, a surrogate model of the exact STR disparity is built during the optimization. This transferability approach has been compared to two reality-based optimization methods, a noise-based approach inspired from Jakobi's minimal simulation methodology and a local search approach. It has been validated on two robotic applications: 1) a navigation task with an e-puck robot; and 2) a walking task with a 8-DOF quadrupedal robot. For both experimental setups, our approach successfully finds efficient and well-transferable controllers only with about ten experiments on the physical robot.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available