4.7 Article

Item-Location Assignment Using Fuzzy Logic Guided Genetic Algorithms

Journal

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
Volume 12, Issue 6, Pages 765-780

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TEVC.2008.924426

Keywords

Genetic algorithms; item-location assignment; linear integer programming; logistics; optimization

Funding

  1. Research Committee of The Hong Kong Polytechnic University

Ask authors/readers for more resources

In today's logistics environment, large-scale combinatorial problems will inevitably be met during industrial operations. This paper deals with a novel real-world optimization problem, called the item-location assignment problem, faced by a logistics company in Shenzhen, China. The objective of the company in this particular operation is to assign items to suitable locations such that the required sum of the total traveling time of the workers to complete all orders is minimized. A stochastic search technique called fuzzy logic guided genetic algorithms (FLGA) is proposed to solve this operational problem. In GA, a specially designed crossover operation, called a shift and uniform based multi-point (SUMP) crossover, and swap mutation are adopted. The performance of this novel crossover operation is tested and is shown to be more effective by comparing it to other crossover methods. Furthermore, the role of fuzzy logic is to dynamically adjust the crossover and mutation rates after each ten consecutive generations. In order to demonstrate the effectiveness of the FLGA and make comparisons with the FLGA through simulations, various search methods such as branch and bound, standard GA (i.e., without the guide of fuzzy logic), simulated annealing, tabu search, differential evolution, and two modified versions of differential evolution are adopted. Results show that the FLGA outperforms the other search methods in all of the three considered scenarios.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available