4.6 Article

Mathematical Modeling of Li-Ion Battery Using Genetic Algorithm Approach for V2G Applications

Journal

IEEE TRANSACTIONS ON ENERGY CONVERSION
Volume 29, Issue 2, Pages 332-343

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TEC.2014.2298460

Keywords

Batteries; capacity loss; electric vehicles (EVs); genetic algorithm GA); vehicle-to-grid (V2G)

Ask authors/readers for more resources

This paper presents an electric circuit-based battery and a capacity fade model suitable for electric vehicles (EVs) in vehicle-to-grid applications. The circuit parameters of the battery model (BM) are extracted using genetic algorithm-based optimization method. A control algorithm has been developed for the battery, which calculates the processed energy, charge or discharge rate, and state of charge limits of the battery in order to satisfy the future requirements of EVs. A complete capacity fade analysis has been carried out to quantify the capacity loss with respect to processed energy and cycling. The BM is tested by simulation and its characteristics such as charge and discharge voltage, available and stored energy, battery power, and its capacity loss are extracted. The propriety of the proposed model is validated by superimposing the results with four typical manufacturers' data. The battery profiles of different manufacturers' like EIG, Sony, Panasonic, and Sanyo have been taken and their characteristics are compared with proposed models. The obtained battery characteristics are in close agreement with the measured (manufacturers' catalogue) characteristics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available