4.6 Article

High Voltage Vertical GaN p-n Diodes With Avalanche Capability

Journal

IEEE TRANSACTIONS ON ELECTRON DEVICES
Volume 60, Issue 10, Pages 3067-3070

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TED.2013.2266664

Keywords

Avalanche breakdown; gallium nitride (GaN); power diodes; power-semiconductor devices

Ask authors/readers for more resources

In this paper, vertical p-n diodes fabricated on pseudobulk gallium nitride (GaN) substrates are discussed. The measured devices demonstrate breakdown voltages of 2600 V with a differential specific on-resistance of 2 m Omega cm(2). This performance places these structures beyond the SiC theoretical limit on the power device figure of merit chart. Contrary to common belief, GaN devices do possess avalanche capability. The temperature coefficient of the breakdown voltage is positive, showing that the breakdown is indeed because of impact ionization and avalanche. This is an important property of the device for operation in inductive switching environments. Critical electric field and mobility parameters for epitaxial GaN layers grown on bulk GaN are extracted from electrical measurements. The reverse recovery time of the vertical GaN p-n diode is not discernible because it is limited by capacitance rather than minority carrier storage, and because of this its switching performance exceeds the highest speed silicon diode.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available