4.6 Article

Battery-Health Conscious Power Management in Plug-In Hybrid Electric Vehicles via Electrochemical Modeling and Stochastic Control

Journal

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY
Volume 21, Issue 3, Pages 679-694

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCST.2012.2189773

Keywords

Batteries; electrochemical modeling; optimal control; plug-in hybrid vehicles; power management; stochastic control

Funding

  1. National Science Foundation

Ask authors/readers for more resources

This paper develops techniques to design plug-in hybrid electric vehicle (PHEV) power management algorithms that optimally balance lithium-ion battery pack health and energy consumption cost. As such, this research is the first to utilize electrochemical battery models to optimize the power management in PHEVs. Daily trip length distributions are integrated into the problem using Markov chains with absorbing states. We capture battery aging by integrating two example degradation models: solid-electrolyte interphase (SEI) film formation and the Ah-processed model. This enables us to optimally tradeoff energy cost versus battery-health. We analyze this tradeoff to explore how optimal control strategies and physical battery system properties are related. Specifically, we find that the slope and convexity properties of the health degradation model profoundly impact the optimal charge depletion strategy. For example, solutions that balance energy cost and SEI layer growth aggressively deplete battery charge at high states-of-charge (SoCs), then blend engine and battery power at lower SoCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available