4.1 Article

Adaptive variability to low-pH river discharges in Acartia tonsa and stress responses to high PCO2 conditions

Journal

MARINE ECOLOGY-AN EVOLUTIONARY PERSPECTIVE
Volume 37, Issue 1, Pages 215-226

Publisher

WILEY
DOI: 10.1111/maec.12282

Keywords

Adaptive variability; copepods; low pH; ocean acidification; river discharges

Funding

  1. Chilean Scientific and Technologic Commission through the postdoctoral FONDECYT [3110019]
  2. Proyecto Anillos [ACT-132]
  3. FONDECYT [1130254]
  4. Millennium Scientific Initiative Grant [IC120019]
  5. Red Doctoral REDOC.CTA
  6. MINEDUC project at Universidad de Concepcion [UCO1202]

Ask authors/readers for more resources

Environmental transitions leading to spatial physical-chemical gradients are of ecological and evolutionary interest because they are able to induce variations in phenotypic plasticity. Thus, the adaptive variability to low-pH river discharges may drive divergent stress responses [ingestion rates (IR) and expression of stress-related genes such as Heat shock protein 70 (Hsp70) and Ferritin] in the neritic copepod Acartia tonsa facing changes in the marine chemistry associated to ocean acidification (OA). These responses were tested in copepod populations inhabiting two environments with contrasting carbonate system parameters (an estuarine versus coastal area) in the Southern Pacific Ocean, and assessing an insitu and 96-h experimental incubation under conditions of high pressure of CO2 (PCO2 1200ppm). Adaptive variability was a determining factor in driving variability of copepods' responses. Thus, the food-rich but colder and corrosive estuary induced a traits trade-off expressed as depressed IR under insitu conditions. However, this experience allowed these copepods to tolerate further exposure to high PCO2 levels better, as their IRs were on average 43% higher thanthose of the coastal individuals. Indeed, expression of both the Hsp70 and Ferritin genes in coastal copepods was significantly higher after acclimation to high PCO2 conditions. Along with other recent evidence, our findings confirm that adaptation to local fluctuations in seawater pH seems to play a significant role in the response of planktonic populations to OA-associated conditions. Facing the environmental threat represented by the inter-play between multiple drivers of climate change, this biological feature should be examined in detail asa potential tool for risk mitigation policies in coastal management arrangements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available