3.9 Article

Shot Noise Thermometry for Thermal Characterization of Templated Carbon Nanotubes

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCAPT.2009.2038488

Keywords

Carbon nanotubes; electrical noise; thermal resistance

Ask authors/readers for more resources

A carbon nanotube (CNT) thermometer that operates on the principles of electrical shot noise is reported. Shot noise thermometry is a self-calibrating measurement technique that relates statistical fluctuations in dc current across a device to temperature. A structure consisting of vertical, top, and bottom-contacted single-walled carbon nanotubes in a porous anodic alumina template was fabricated and used to measure shot noise. Frequencies between 60 and 100 kHz were observed to preclude significant influence from 1/f noise, which does not contain thermally relevant information. Because isothermal models do not accurately reproduce the observed noise trends, a self-heating shot noise model has been developed and applied to experimental data to determine the thermal resistance of a CNT device consisting of an array of vertical single-walled CNTs supported in a porous anodic alumina template. The thermal surface resistance at the nanotube-dielectric interface is found to be 1.5 x 10(8) K/W, which is consistent with measurements by other techniques.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available