4.7 Article

Sample Rate Conversion Using B-Spline Interpolation for OFDM Based Software Defined Radios

Journal

IEEE TRANSACTIONS ON COMMUNICATIONS
Volume 60, Issue 8, Pages 2113-2122

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCOMM.2012.062511.110318

Keywords

Software defined radio; sample rate conversion; B-spline interpolation; and OFDM

Ask authors/readers for more resources

This paper proposes arbitrary ratio sample rate conversion (SRC) architectures and a simpler B-spline interpolation algorithm for orthogonal frequency division multiplexing (OFDM) based software defined radios (SDRs) with multiband and multi-channel capabilities. Different from conventional standalone digital front-end designs for SDRs, the proposed SRC architectures combine the B-spline interpolation with OFDM modulation and equalization for OFDM transmitter and receiver respectively. With this combined design, the passband droop introduced by the B-spline interpolation can be more efficiently compensated using frequency-domain pre-distortion, instead of conventional time-domain pre-filtering, and hence an overall system complexity reduction is achieved. A novel multi-period B-spline interpolation and re-sampling structure is then constructed, and an interpolation algorithm with lower implementation complexity than that of the conventional Farrow structure is further developed. The SRC performance is also analysed by deriving the signal-to-peak distortion ratio formulas which can be used as design tools for determining the required orders of B-splines in the OFDM transmitter and receiver respectively. Finally, SRC examples used in a high-speed multiband multi-channel microwave backhaul system are given and compared with conventional polyphase filterbank interpolation to demonstrate the practicality and performance of the proposed SRC architectures and interpolation algorithm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available