4.6 Article

Design considerations for cascade ΔΣ ADC's

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCSII.2007.914891

Keywords

delta-sigma (Delta Sigma) analog-to-digital converter (ADC); MASH; power consumption

Ask authors/readers for more resources

This brief discusses the design tradeoffs for cascaded delta-sigma (Delta Sigma) analog-to-digital converters. Increasing the order of the first loop allows a tradeoff between aggressive noise shaping and moderate operational transconductance amplifier (OTA) specifications. A comparison between fourth-order topologies indicates that for a cascade 3-1 topology, 55-dB OTA gain is sufficient for 96-dB signal-to-noise-distortion ratio while 5% coefficient mismatch results in less than 4-dB degradation. Dependent on the ratio between the power consumption of the digital recombination and decimation filter and that of the analog loop filter, the optimal topology can be chosen. A cascade 3-1 converter is most efficient when this ratio lies between 0.54 and 0.97. A design in a 65-nm CMOS technology demonstrates the performance of a cascade 3-1 converter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available