4.7 Article

A Pipelined FFT Architecture for Real-Valued Signals

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCSI.2009.2017125

Keywords

Decimation-in-frequency; decimation-in-time; fast Fourier transform (FFT); memory reduction; pipelined architecture; real-valued signals; reordering circuit

Ask authors/readers for more resources

This paper presents a new pipelined hardware architecture for the computation of the real-valued fast Fourier transform (RFFT). The proposed architecture takes advantage of the reduced number of operations of the RFFT with respect to the complex fast Fourier transform (CFFT), and requires less area while achieving higher throughput and lower latency. The architecture is based on a novel algorithm for the computation of the RFFT, which, contrary to previous approaches, presents a regular geometry suitable for the implementation of hardware structures. Moreover, the algorithm can be used for both the decimation in time (DIT) and decimation in frequency (DIF) decompositions of the RFFT and requires the lowest number of operations reported for radix 2. Finally, as in previous works, when calculating the RFFT the output samples are obtained in a scrambled order. The problem of reordering these samples is solved in this paper and a pipelined circuit that performs this reordering is proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available