4.4 Article

Effect of climate change on crustose coralline algae at a temperate vent site, White Island, New Zealand

Journal

MARINE AND FRESHWATER RESEARCH
Volume 66, Issue 4, Pages 360-370

Publisher

CSIRO PUBLISHING
DOI: 10.1071/MF14077

Keywords

CO2 vents; mineralogy; ocean acidification

Funding

  1. Otago Center for Electron Microscopy
  2. University of Otago Department of Marine Science

Ask authors/readers for more resources

Natural CO2 vents allow study of the effects of climate change on marine organisms on a different scale from laboratory-based studies. This study outlines a preliminary investigation into the suitability of natural CO2 vents near White Island, Bay of Plenty, New Zealand (37 degrees 31.19S, 117 degrees 10.85E) for climate change research by characterising water chemistry from two vent and three control locations on a seasonal basis, as well as examining their effects on skeletons of the local calcifying crustose coralline algae. pH measurements at vent sites, calculated from dissolved inorganic carbon and alkalinity, showed reduced mean pH levels (7.49 and 7.85) relative to background levels of 8.06, whereas mean temperatures were between 0.0 and 0.4 degrees C above control. Increases in sulfur and mercury at sites near White Island were probably a result of volcanic unrest. Crustose coralline algae did not show significant variability in skeletal Mg-calcite geochemistry, but qualitative comparisons of calcite skeletons under scanning electron microscopy saw greater deformation and dissolution in coralline algae calcite crystals from vent sites compared to controls. Although additional monitoring of pH fluctuations and hydrogen sulphides is still needed, the low pH and increased temperatures indicate potential for studying multistressor effects of projected climate changes in a natural environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available