4.7 Article Proceedings Paper

Switched-capacitor/switched-inductor structures for getting transformerless hybrid dc-dc PWM converters

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCSI.2008.916403

Keywords

dc-dc hybrid converter; switched capacitor; switched inductor; steady-state analysis

Ask authors/readers for more resources

A few simple switching structures, formed by either two capacitors and two-three diodes (C-switching), or two inductors and two-three diodes (L-switching) are proposed. These structures can be of two types: step-down and step-up. These blocks are inserted in classical converters: buck, boost, buck-boost, Cuk, Zeta, Sepic. The step-down C- or L-switching structures can be combined with the buck, buck-boost, Cuk, Zeta, Sepic converters in order to get a step-down function. When the active switch of the converter is on, the inductors in the L-switching blocks are charged in series or the capacitors in the C-switching blocks are discharged in parallel. When the active switch is off, the inductors in the L-switching blocks are discharged in parallel or the capacitors in the C-switching blocks are charged in series. The step-up C- or L-switching structures are combined with the boost, buck-boost, Cuk, Zeta, Sepic converters, to get a step-up function. The steady-state analysis of the new hybrid converters allows for determing their dc line-to-output voltage ratio. The gain formula shows that the hybrid converters are able to reduce/increase the line voltage more times than the original, classical converters. The proposed hybrid converters contain the same number of elements as the quadratic converters. Their performances (dc gain, voltage and current stresses on the active switch and diodes, currents through the inductors) are compared to those of the available quadratic converters. The superiority of the new, hybrid converters is mainly based on less energy in the magnetic field, leading to saving in the size and cost of the inductors, and less current stresses in the switching elements, leading to smaller conduction losses. Experimental results confirm the theoretical analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available