4.6 Article

Quantifying the Interfibrillar Spacing and Fibrillar Orientation of the Aortic Extracellular Matrix Using Histology Image Processing: Toward Multiscale Modeling

Journal

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
Volume 60, Issue 5, Pages 1171-1180

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2012.2229708

Keywords

Fourier transform; Hough transform; microstructural quantification; vascular biomechanics

Funding

  1. Department of Mechanical Engineering, University of Maryland

Ask authors/readers for more resources

An essential part of understanding tissue microstructural mechanics is to establish quantitative measures of the morphological changes. Given the complex, highly localized, and interactive architecture of the extracellular matrix, developing techniques to reproducibly quantify the induced microstructural changes has been found to be challenging. In this paper, a new method for quantifying the changes in the fibrillar organization is developed using histology images. A combinatorial frequency-spatial image processing approach was developed based on the Fourier and Hough transformations of histology images to measure interfibrillar spacing and fibrillar orientation, respectively. The method was separately applied to the inner and outer wall thickness of native-and elastin-isolated aortic tissues under different loading states. Results from both methods were interpreted in a complementary manner to obtain a more complete understanding of morphological changes due to tissue deformations at the microscale. The observations were consistent in quantifying the observed morphological changes during tissue deformations and in explaining such changes in terms of tissue-scale phenomena. The findings of this study could pave the way for more rigorous modeling of structure-property relationships in soft tissues, with implications extendable to cardiovascular constitutive modeling and tissue engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available