4.6 Article

Targeted Tissue Ablation With Nanosecond Pulses

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2011.2113183

Keywords

Ablation; muscle contractions; nanosecond pulses; nonthermal effects; pulsed electric fields

Funding

  1. Ethicon Endo-Surgery

Ask authors/readers for more resources

In-vivo porcine studies on the effect of nanosecond high-voltage pulses on liver tissue have shown that cell death can be induced in well-defined tissue volumes without damaging collagen-predominant structures. Comparison of the experimental results with the results of a 3-D finite element model allowed us to determine the threshold electric field for cell death. For 30, 100-ns-long pulses this was found to be in the range from 12 to 15 kV/cm. Modeling of the temperature distribution in the tissue using Pennes' bioheat equation showed that the lethal effect of nanosecond pulses on cells is nonthermal. Muscle contractions, generally caused by high-voltage pulses, were significantly reduced for the 100-ns pulses compared to microsecond-long pulses. The results of these studies indicate that high-voltage nanosecond pulses reliably kill normal liver cells in vivo, and therefore, may be useful for liver tumor treatments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available