4.7 Article

Kalman Filtering With Intermittent Observations: Weak Convergence to a Stationary Distribution

Journal

IEEE TRANSACTIONS ON AUTOMATIC CONTROL
Volume 57, Issue 2, Pages 405-420

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TAC.2011.2161834

Keywords

Ergodic; Kalman filtering; random Riccati equation; stationary distribution; weak convergence

Funding

  1. National Science Foundation (NSF) [CCF-1018509, CCF-1011903]
  2. Air Force Office of Scientific Research (AFOSR) [FA9550101291]
  3. Direct For Computer & Info Scie & Enginr
  4. Division of Computing and Communication Foundations [1018509] Funding Source: National Science Foundation
  5. Div Of Electrical, Commun & Cyber Sys
  6. Directorate For Engineering [0955111] Funding Source: National Science Foundation

Ask authors/readers for more resources

The paper studies the asymptotic behavior of discrete time Random Riccati Equations (RRE) arising in Kalman filtering when the arrival of the observations is described by a Bernoulli independent and identically distributed (i.i.d.) process. We model the RRE as an order-preserving, strongly sublinear random dynamical system (RDS). Under a sufficient condition, stochastic boundedness, and using a limit-set dichotomy result for order-preserving, strongly sublinear RDS, we establish the asymptotic properties of the RRE: the sequence of random prediction error covariance matrices converges weakly to a unique invariant distribution, whose support exhibits fractal behavior. For stabilizable and detectable systems, stochastic boundedness (and hence weak convergence) holds for any nonzero observation packet arrival probability and, in particular, we can establish weak convergence at operating arrival rates well below the critical probability for mean stability (the resulting invariant measure in that situation does not possess a first moment). We apply the weak-Feller property of the Markov process governing the RRE to characterize the support of the limiting invariant distribution as the topological closure of a countable set of points, which, in general, is not dense in the set of positive semi-definite matrices. We use the explicit characterization of the support of the invariant distribution and the almost sure (a.s.) ergodicity of the sample paths to easily compute statistics of the invariant distribution. A one-dimensional example illustrates that the support is a fractured subset of the non-negative reals with self-similarity properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available