4.4 Article

Energy-Efficient Superconducting Computing-Power Budgets and Requirements

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TASC.2013.2244634

Keywords

Rapid single flux quantum (RSFQ); single flux quantum; supercomputers; superconducting integrated circuits; superconducting logic circuits

Ask authors/readers for more resources

Large-scale computing system characteristics vary by application class, but power and energy use has become a major problem for all classes. Superconducting computing may be able to serve the needs of these systems significantly better than conventional technology. Recent developments in single flux quantum circuit technology for digital logic include variants with greatly improved energy efficiency. Concepts were investigated for computing systems capable of performance in the range from 1 to 1000 PFLOP/s. The concept systems were constrained to use existing commercial cryogenic refrigerators and Nb superconducting technology. In order to meet the performance goals, cache and main memory capable of operating at cryogenic temperatures will be required. Superconducting computing is shown to be potentially competitive on the basis of power and energy efficiency if key component technologies can meet specific goals. Potential advantages of superconducting computing are identified as well as areas requiring further development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available